O teorie îmbunătățită a deformației la forfecare pentru grinzi încovoiate cu proprietăți mecanice care variază simetric pe direcția adâncimii

Efectul de forfecare care apare în construcțiile încovoiate a fost observat încă din secolul al XIX-lea și studiat în detaliu pentru construcții omogene și stratificate în secolul al XX-lea. Asumarea unei teorii adecvate a deformării liniei drepte normale la suprafața neutră constituie o bază pentru modelarea analitică a structurilor eterogene, în special a celor cu proprietăți mecanice care variază în direcția grosimii peretelui.

Reddy a elaborat un model teoretic de încovoiere a plăcilor dreptunghiulare cu grad funcțional luând în considerare efectul de forfecare. Analiza detaliată este făcută ținând cont de teoria deformării prin forfecare de ordinul întâi și al treilea. Zenkour a prezentat o teorie generalizată a deformării prin forfecare și aplicarea ei la analiza plăcilor dreptunghiulare cu grad funcțional supuse la o sarcină uniform distribuită. Efectul de forfecare transversală este studiat în detaliu. Aydogdu a propus o nouă teorie a deformării prin forfecare pentru plăci compozite laminate. Această teorie îndeplinește exact condițiile de anulare a tensiunilor de forfecare pe suprafața superioară și inferioară a plăcii. Reddy a prezentat o reformulare a teoriilor clasice și de deformare prin forfecare a grinzilor și plăcilor, ținând cont de relațiile constitutive diferențiale nelocale ale lui Eringen și de tensiunile neliniare ale lui von Kármán. Sunt formulate ecuațiile de echilibru ale teoriilor nelocale ale grinzilor și ale teoriilor clasice și de deformație prin forfecare de ordinul întâi ale plăcilor. Carrera et al. au descris în detaliu teoriile clasice și avansate, inclusiv: elementele de bază ale teoriei corpurilor deformabile, teoriile Euler-Bernoulli și Timoshenko ale grinzilor, teoriile neliniare, de exemplu, teoriile grinzilor parabolice, cubice, cuartice și de ordinul n, precum și modelarea grinzilor realizate din materiale cu grad funcțional. Meiche et al. au prezentat o nouă teorie hiperbolică de deformare prin forfecare pe exemplul de flambaj și analiză a vibrațiilor libere a plăcilor sandwich groase cu grad funcțional. Această teorie este mai perfectă în raport cu teoriile simple de deformare prin forfecare ale lui Mindlin și Reissner. Mai mult, aceasta oferă o variație parabolică a tensiunilor transversale de forfecare de-a lungul grosimii și, de asemenea, anularea acestora pe suprafețele externe. Thai și Vo au dezvoltat diverse teorii de deformare prin forfecare de ordin superior pentru testarea încovoierii și a vibrațiilor libere ale grinzilor cu grad funcțional. Aceste teorii iau în considerare variația de ordin superior a deformației transversale de forfecare în direcția adâncimii grinzii și îndeplinesc condițiile de frontieră fără tensiuni pe suprafețele superioare și inferioare ale grinzii. Thai și Vo au dezvoltat o nouă teorie sinusoidală a deformării de forfecare pentru plăci dreptunghiulare cu grad funcțional. Această teorie descrie distribuția sinusoidală a tensiunii transversale de forfecare și îndeplinește condițiile de anulare a tensiunii de forfecare pe suprafețele exterioare ale plăcii. S-au efectuat teste detaliate privind încovoierea, flambarea și vibrațiile acestor plăci.

Akgöz și Civalek au prezentat un nou model analitic de deformație prin forfecare de ordin superior pentru grinzi, cu luarea în considerare a teoriei elasticității cu gradient de deformație. Acest model descrie efectele microstructurale și de deformare la forfecare fără a fi nevoie de factori de corecție la forfecare. Sunt studiate problemele de încovoiere statică și de vibrație liberă a microbârnelor simplu sprijinite. Grover et al. au propus o nouă teorie hiperbolică inversă a deformării prin forfecare a plăcilor compozite laminate și sandwich. Această teorie este formulată pe baza funcției de formă a deformației de forfecare și validată prin studii numerice ale problemei de încovoiere și flambare a plăcilor dreptunghiulare. Sahoo și Singh au propus o nouă teorie trigonometrică inversă în zig-zag pentru plăci compozite laminate și plăci sandwich. Această teorie asigură condițiile de continuitate la interfețele straturilor și anularea tensiunii de forfecare pe suprafețele exterioare ale plăcii. Modelul eficient cu elemente finite este dezvoltat pentru studii numerice ale problemelor statice ale acestor plăci. Xiang a îmbunătățit teoria deformării prin forfecare de ordinul n cu luarea în considerare a condiției de anulare a tensiunii de forfecare pe suprafețele exterioare ale grinzii cu grad funcțional. Sunt analizate problemele de vibrații libere ale acestei grinzi. Kumar și Chakraverty au propus patru noi teorii trigonometrice inverse de deformare prin forfecare care permit studierea vibrațiilor libere ale plăcilor dreptunghiulare groase izotrope. Teoriile asigură îndeplinirea condițiilor limită de tensiune transversală pe ambele suprafețe ale plăcii. S-a efectuat un test de convergență și validare cu cazuri din literatura de specialitate disponibilă. Mahi et al. au prezentat o nouă teorie hiperbolică de deformare la forfecare care descrie încovoierea și vibrația liberă a plăcilor compozite izotrope, cu grad funcțional, sandwich și laminate. Abordarea nu necesită un factor de corecție la forfecare. Pe baza principiului lui Hamilton a fost obținută funcția energetică a sistemului. Precizia metodei a fost demonstrată prin comparații cu soluția numerică a problemei.

Darijani și Shahdadi au propus o nouă teorie a plăcilor de deformare cu luarea în considerare a deformațiilor de forfecare. Tensiunile transversale de forfecare variază pe grosimea plăcii în funcție de o relație de tip lege de putere. Suprafețele superioare și inferioare ale plăcii sunt lipsite de tensiuni de forfecare. Ecuațiile de guvernare și condițiile la limită ale plăcii sunt derivate cu ajutorul principiului lui Hamilton. Rezultatele sunt comparabile cu cele obținute cu ajutorul teoriilor de ordin superior. Lezgy-Nazargah a luat în considerare fenomenele termo-mecanice în grinzi realizate dintr-un material cu grad funcțional. În acest scop a fost utilizată o teorie rafinată de ordin înalt, în timp ce câmpul de deplasare în plan a fost descris prin expresii polinomiale și exponențiale. Rezultatele numerice astfel obținute au fost comparate cu soluțiile altor autori. Sobhy a utilizat o nouă teorie a plăcilor cu patru variabile de deformare prin forfecare pentru a descrie vibrațiile și flambajul plăcilor sandwich cu grad funcțional susținute de fundații elastice. Ecuațiile de mișcare au fost derivate pe baza principiului lui Hamilton. Validitatea teoriei a fost verificată prin compararea rezultatelor obținute cu cele anterioare. Sarangan și Singh au elaborat mai multe teorii noi de deformare prin forfecare aplicabile la analiza comportării statice, la flambaj și la vibrații libere a plăcilor compozite laminate și sandwich. Teoriile asigură reducerea la zero a tensiunilor transversale de forfecare la suprafețele exterioare ale plăcii. Acuratețea modelelor a fost verificată în mod pozitiv prin comparație cu rezultatele soluțiilor de elasticitate 3D și cu teoriile existente. Chen et al. au investigat vibrația liberă și forțată a grinzilor poroase cu gradație funcțională. Teoria grinzilor Timoshenko cu luarea în considerare a efectului tensiunii transversale de forfecare a permis derivarea ecuației de mișcare. Abordarea a permis calcularea eficientă a frecvențelor naturale și a deformărilor dinamice tranzitorii pentru grinzile poroase supuse la diferite condiții de încărcare. Singh și Singh s-au ocupat de plăci compozite laminate și împletite tridimensionale. În acest scop, autorii au dezvoltat două noi teorii de deformare la forfecare. Ecuațiile diferențiale de guvernare au fost formulate pe baza principiului lucrului virtual. Rezultatele obținute cu ajutorul metodei elementelor finite au confirmat buna eficacitate a celor două teorii propuse. Shi et al. au formulat o nouă teorie de deformare la forfecare aplicabilă pentru analiza vibrațiilor libere și a flambajului plăcilor compozite laminate. Teoria asigură dispariția tensiunilor de forfecare la suprafețele plăcilor. În plus, factorii de corecție la forfecare nu sunt necesari. Soluțiile disponibile în literatura de specialitate au confirmat acuratețea și eficiența ridicată a noii metode. Thai et al. au prezentat o teorie simplă a grinzilor utilizată pentru analiza încovoierii statice și a vibrațiilor libere ale nanogrinzilor izotrope. Ecuația de guvernare a fost derivată pe baza ecuațiilor de echilibru ale teoriei elasticității. S-au obținut soluții analitice pentru grinzi nelocale, impunând diferite tipuri de condiții la limită. Verificările au arătat o bună acuratețe și eficiență a teoriei. Pei et al. au elaborat o teorie modificată de ordin superior a grinzilor cu gradație funcțională folosind principiul lucrului virtual. Teoria face o distincție între centroidul și punctul neutru al secțiunii transversale. În plus, este explicată relația cu teoria tradițională de ordin superior, ceea ce simplifică un studiu comparativ al diferitelor teorii ale grinzilor de ordin superior. Kumar et al. au analizat plăci din materiale cu gradație funcțională folosind două noi teorii proprii de deformare transversală la forfecare de ordin superior. Principiul energiei a fost utilizat pentru a deriva ecuația diferențială de guvernare a plăcii. Rezultatele obținute privind deformarea și tensiunile au fost comparate cu alte date publicate. Au fost analizate efectele diferitelor tipuri de sarcini, ale raportului dintre deschidere și grosime și ale indicelui de gradare. Magnucki și Lewiński au luat în considerare grinzi pur și simplu sprijinite cu proprietăți mecanice care variază simetric în direcția adâncimii, supuse la diferite tipuri de sarcini – de la cele distribuite uniform la cele concentrate. Deformarea secțiunii transversale plane a unei grinzi după încovoiere a fost determinată pe baza unei ipoteze „polinomiale” neliniare proprii. Ecuația diferențială de echilibru a fost formulată pe baza definițiilor momentului încovoietor și a forței transversale de forfecare și apoi a fost rezolvată pentru mai multe exemple de grinzi. Magnucki et al. au propus o nouă formulare a funcțiilor care determină variația proprietăților mecanice ale unei grinzi pe direcția adâncimii. Abordarea constă într-o generalizare care permite descrierea structurilor omogene, neliniar variabile și a structurilor sandwich cu ajutorul unui model analitic universal. Ecuațiile de mișcare au fost derivate pe baza principiului lui Hamilton și rezolvate analitic. Rezultatele au fost verificate prin calcul FEM. Katili et al. au propus un element de grindă cu două noduri de ordin superior dezvoltat pentru a rezolva problemele statice și de vibrații libere. Teoria grinzii Timoshenko a fost modificată în vederea luării în considerare în mod corespunzător a efectului de forfecare transversală. Eficacitatea abordării a fost verificată prin comparație cu alte date publicate în literatura de specialitate. Lezgy-Nazargah a dezvoltat o teorie globală-locală de deformare prin forfecare care prevede cu precizie comportamentul static și dinamic al grinzilor curbe cu straturi subțiri și groase. Variația tensiunii de forfecare în direcția grosimii grinzii este aproximată printr-o funcție parabolică. Anularea tensiunii de forfecare pe suprafețele limită ale grinzii este asigurată fără a fi nevoie de un coeficient de corecție a forfecării. Rezultatele obținute din calculele statice și de vibrații libere sunt validate pozitiv de cele calculate cu FEM.

Obiectivul principal al lucrării de față constă în îmbunătățirea teoriei deformației de forfecare la încovoiere în cazul în care proprietățile mecanice ale materialului variază simetric pe direcția de adâncime a secțiunii transversale. Se propune funcția neliniară individuală de deformare a secțiunii transversale plane. Teoria îmbunătățită a deformației la forfecare este aplicată la grinzi exemplare, al căror model analitic este elaborat. Se elaborează modelul analitic al acestor grinzi. Rezultatele analitice sunt comparate cu cele obținute printr-o abordare numerică FEM. Problema prezentată a grinzilor încovoiate cu luarea în considerare a efectului de forfecare este o continuare a cercetărilor prezentate de Magnucki și Lewinski și Magnucki et al. .

.