Los exponentes son potencias o índices. Un exponente o potencia denota el número de veces que un número se multiplica repetidamente por sí mismo. Por ejemplo, cuando encontramos un número escrito como, 53, simplemente implica que 5 se multiplica por sí mismo tres veces. En otras palabras, 53 = 5 x 5 x 5 = 125.
Una expresión exponencial consta de dos partes, a saber, la base, denotada como b y el exponente, denotado como n. La forma general de una expresión exponencial es b n.
¿Cómo multiplicar exponentes?
Realizar la multiplicación de exponentes forma una parte crucial de las matemáticas de nivel superior, sin embargo muchos estudiantes luchan por entender cómo realizar esta operación. Aunque las expresiones que implican exponentes negativos y múltiples parecen confusas.
En este artículo, vamos a aprender la multiplicación de exponentes y por lo tanto, esto va a ayudar a sentirse mucho más cómodo abordando problemas con exponentes.
La multiplicación de exponentes conlleva los siguientes subtemas:
- Multiplicación de exponentes con la misma base
- Multiplicación de exponentes con diferentes bases
- Multiplicación de exponentes negativos
- Multiplicación de fracciones con exponentes
- Multiplicación de exponentes fraccionarios
- Multiplicación de variables con exponentes
- Multiplicación de raíces cuadradas con exponentes
Multiplicación de exponentes con la misma base
En la multiplicación de exponentes con las mismas bases, los exponentes se suman. La regla de multiplicación de la suma de exponentes cuando las bases son iguales se puede generalizar como: a n x a m = a n+ m
Ejemplo 1
- m⁵ × m³ = (m × m × m × m) × (m × m × m)
= m5 + 3
= m⁸
- 3⁴ × 3² = (3 × 3 × 3) × (3 × 3) = 3 4+ 3= 3⁶
- (-3) ³ × (-3) ⁴ = ×
= (-3) 3 +4
= (-3)7
- 5³ ×5⁶
= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)
= 53+6
= 5⁹
- (-7)10× (-7) ¹²
= × .
= (-7) ²²
Multiplicación de exponentes con bases diferentes
Cuando se multiplican dos variables con bases diferentes pero con los mismos exponentes, simplemente se multiplican las bases y se coloca el mismo exponente. Esta regla se puede resumir como:
a n ⋅ b n = (a ⋅ b) n
Ejemplo 2
- (x3) *(y3) = xxx*yyy = (x y)3
- 3 2 x 4 2= (3 x 4)2= 122 = 144
Si tanto los exponentes como las bases son diferentes, entonces cada número se calcula por separado y luego los resultados se multiplican juntos. En este caso, la fórmula viene dada por: a n ⋅ b m
Ejemplo 3
- 32x 43 = 9 x 64 = 576
- ¿Cómo multiplicar exponentes negativos?
Para los números con la misma base y exponentes negativos, simplemente sumamos los exponentes. En general: a -n x a -m = a -(n + m) = 1 / a n + m.
Ejemplo 4
- 2-3x 2-4 = 2-(3+4) = 2-7 = 1 / 27 = 1 / (2 x 2 x 2 x 2 x 2) = 1 / 128 = 0.0078125
De igual manera, si las bases son diferentes y los exponentes son iguales, primero multiplicamos las bases y utilizamos el exponente.
a -n x b -n = (a x b) -n
Ejemplo 5
- 3-2x 4-2 = (3 x 4)-2 = 12-2 = 1 / 122 = 1 / (12⋅12) = 1 / 144 = 0.0069444
- ¿Cómo multiplicar fracciones con exponentes?
Cuando se multiplican fracciones con la misma base, se suman los exponentes. Por ejemplo:
(a / b) n x (a / b) m = (a / b) n + m
Ejemplo 6
- (4/3)3x (3/5)3 = ((4/3) x (3/5))3 = (4/5)3 = 0,83 = 0,8 x 0,8 x 8 = 0.512
- (4/3)3x (4/3)2 = (4/3) 3+2 = (4/3) 5 = 45 / 35 = 4.214
- (-1/4)-3× (-1/4)-2
(-1/4)-3 × (-1/4)-2
= (4/-1)3 × (4/-1)2
= (-4)3 × (-4)2
= (-4) (3 + 2)
= (-4)5
= -45
= -1024. - (-2/7)-4× (-5/7)2
(-2/7)-4 × (-5/7)2
= (7/-2)4 × (-5/7)2
= (-7/2)4 × (-5/7)2
= (-7)4/24 × (-5)2/72
= {74 × (-5)2}/{24 × 72 }
= {72 × (-5)2 }/24
= /16
= 1225/16
- ¿Cómo multiplicar exponentes fraccionarios?
La fórmula general para este caso es: a n/m ⋅ b n/m = (a ⋅ b) n/m
Ejemplo 7
- 23/2x 33/2 = (2⋅3)3/2 = 63/2 = √ (63) = √216 = 14.7
De la misma manera, los exponentes fraccionarios con bases iguales pero exponentes diferentes tienen la fórmula general dada por: a (n/m) x a (k/j) = a
Ejemplo 8
- 2(3/2)x 2(4/3) = 2 = 7,127
- ¿Cómo multiplicar raíces cuadradas con exponentes?
Para exponentes con la misma base, podemos sumar los exponentes:
(√a) n x (√a) m = a (n + m)/2
Ejemplo 9
- (√5)2x (√5)4 = 5(2+4)/2 = 56/2 = 53 = 125
- Multiplicación de variables con exponentes
Para exponentes con la misma base, podemos sumar los exponentes:
xn * x m = x n + m
Ejemplo 10
- x2* x3 = (x * x) ⋅ (x * x * x) = x 2 + 3 = x 5
Preguntas prácticas
- La longitud de un rectángulo es el cuadrado de su anchura. Si el área de este rectángulo es de 64 unidades cuadradas, halla la longitud de un rectángulo.
- La luz tarda 5 × 102 segundos en viajar del Sol a la Tierra. Si la velocidad de la luz es 3 × 108 m/s, ¿cuál es la distancia entre el Sol y la Tierra?
Respuestas
- 4 unidades
- 1,5 × 1011 m